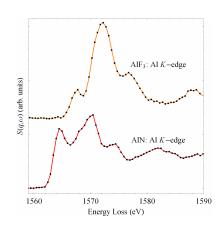

New Science with the LERIX spectrometer at the Advanced Photon Source

Gerald T. Seidler,¹ Tim T. Fister,¹ Ken P. Nagle,¹ Robert A. Gordon,² Mali Balasubramanian,² and Julie O. Cross² 1. University of Washington, Seattle WA 2. Advanced Photon Source, Argonne National Laboratory

The LERIX (lower-energy resolution inelastic x-ray scattering) spectrometer is a new APS user facility for measurement of momentumdependent (q) x-ray scattering (XRS).1 Our goal: a user-friendly, high-throughput facility to use hard x-rays for bulk-sensitive measurement of $S(q,\omega)$ in the UV and soft x-ray energy range with the added option of non-dipole selection rules. These selection rules arise from the multipole terms in the expansion of the dynamic structure factor $S(q, \omega)$:

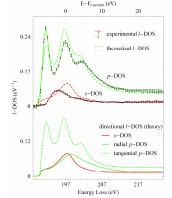

$$\begin{split} S(\vec{q},\omega) &= \sum_{f} \left| \left\langle f \left| e^{i\vec{q}\cdot\vec{r}} \right| i \right\rangle \right|^{2} \delta\left(E_{f} - E_{i} - \hbar\omega\right) \\ &= \sum_{f} \left| \left\langle f \left| 1 + i\vec{q}\cdot\vec{r} \right| + \left(\vec{q}\cdot\vec{r}\right)^{2} + \cdots + \left| i \right\rangle \right|^{2} \delta\left(E_{f} - E_{i} - \hbar\omega\right) \\ \text{1. T.T. Fister, G.T. Seidler et al RSI 77 p. 063901 (2006)} \end{split}$$

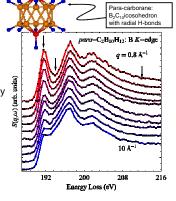
LERIX studies to date include:

- B₄C materials for industrial applications
- Carboranes: tunable selection rules
- · Amine boranes and LiH for H-storage
- Battery applications: Li-intercalated graphite, metal
- · Carbon aerogels for supercapacitor and battery electrodes
- · Carbon nano-onions (nanostuff in space?)
- Petrochemicals: coal and extract from coal shale
- Intermediate-range fine structure in ice at O K-edge
- Mg and Al L-edges: Background proportional enhancement of XRS (also K-edges)
- AIN, SiC: LED applications (all edges)
- AIF₃ Lewis-acids (all edges)
- Exciton spectroscopy in alkali halides (NaF, LiF, ...)
- Transition metal oxides: metal L-, M-edges & O K-edge • CeO2, CeRh3, ... O K-edge and XUV low-energy edges
- Future: solution studies, chem, reactor studies, "lowpressure" capabilities, actinide compounds

Dipole limit: signal proportional to μ in x-ray absorption

Tightly bound initial states, such as the above Al K-edges from AlF₃ and AlN, do not typically have much q-dependence; hence, LERIX can integrate over all 19 channels in q for increased count rates. For instance, each of these measurements only took a couple hours!


Dipole-forbidden transitions: measure the final states' symmetry, i.e. the *l*-DOS.

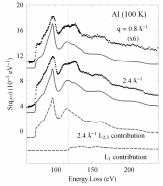

We can expand $S(q,\omega)$ in terms of the *l*-DOS, $\rho_l(\omega)$, with each term weighted by an atomic coefficient M_i:

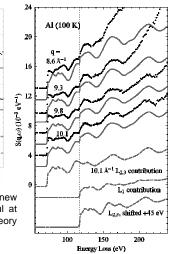
$$S(q, \omega) = \sum_{l} (2l+1) |M_{l}(q, \omega)|^{2} \rho_{l}(\omega)$$


For $C_2B_{10}H_{12}$, we find that only the s- and p-DOS significantly contributed to $S(q,\omega)$. At each energy we then have:

$$\begin{split} S(q_1, \omega_i) &= M_0^2(q_1, \omega_i) \rho_0(\omega_i) + 3M_1^2(q_1, \omega_i) \rho_1(\omega_i) \\ \vdots &= & \vdots \\ S(q_{10}, \omega_i) &= M_0^2(q_{10}, \omega_i) \rho_0(\omega_i) + 3M_1^2(q_1, \omega_i) \rho_1(\omega_i) \end{split}$$

This is an overdetermined set of linear equations and can be inverted for an experimental measure of the l-DOS, as shown on the left. By separating the directional components of the l-DOS, we show that the measured hybridization of the l-DOS agree with prior predictions of s-p radial and p-type tangential antibonding orbitals. (DFT orbitals below)




Background proportional enhancement of fine structure at high q for low-energy edges

Like x-ray absorption spectroscopy (XAS), we can express $S(q,\omega)$ in terms of an atomic background, S_0 , with an additional fine structure term, χ .

$$\mu(\omega) = \mu_0(\omega) [1 + \chi(\omega)]$$
 $S(\vec{q}, \omega) = S_0(\vec{q}, \omega) [1 + \chi(\vec{q}, \omega)]$

In XAS, χ is the quantity of interest: it represents the interference between the excited photoelectron and backscattering from surrounding atoms. Since μ_0 is a decreasing function in XAS with energy, the measured amplitude of the fine structure is similarly reduced. In XRS, the atomic background can actually increase with energy at higher q. As a result, extended fine structure can actually be enhanced using XRS, as can be seen in comparing the low-q and high-q results for Al on the right.1

Using previously developed ab initio multiple scattering theory for XAS, Soininen, Ankudinov, and Rehr have developed a new approach for calculating q-dependent XRS spectra.2 As shown in the two figures, this theory is especially successful at extended energies. Note that contributions from the valence inelastic x-ray scattering cause the separation between the theory and experiment at 8.6 and 9.3 Å-1.

1. T.T. Fister, G.T. Seidler et al PRB 74 p. 214117 (2006); 2. J.A. Soininen et al PRB 72 p. 45136 (2005)